

PKI Overview

- 1. Background: Keys and Lifecycle Management
- 2. PKI components ("puzzle pieces")
- 3. Trust Models

Key Expiry

Certification Authority

- · Issue certificates for all entities / devices (for multiple applications) from a single CA - single system saves h/w, s/w, training, personnel
- · Flexible certificate policy / security policy
 - tailor to needs of environment, application or entity (e.g. certificate lifetime, crypto algorithms, keylengths, password rules, ...)

Browsers include about 650 self- signed CA certificates		
	Certificate Manager	
Your Certificates People Servers	Authorities	
ou have certificates on file that identify these cer	tificate authorities	
Certificate Name	Security Device	C
 Chunghwa Telecom Co., Ltd. 		^
ePKI Root Certification Authority	Builtin Object Token	
 COMODO CA Limited 		
COMODO RSA Certification Authority	Builtin Object Token	
Comodo AAA Services root	Builtin Object Token	
COMODO Certification Authority	Builtin Object Token	
COMODO ECC Certification Authority	Builtin Object Token	
UbiquiTLS [™] DV RSA Server CA	Software Security Device	

45

Improvements to CA ecosystem

- DANE based on DNSSEC specify restrictions for a given SSL/TLS server
 - would need hard fail
- CA Authorization (RFC 6844): tell CA if you are not one of the CAs on this list, don't issue certs for this domain (competition issue?) (2019: 4.4% of sites)
- Pinning: tell clients cert for this site look like this; if you detect something else, this may be a breach (more likely a misconfiguration)
 - not for "smal" sites? (need bootstrap)
 - seems to work for Google/Chrome ecosystem
- Cert Transparency: certs public in authenticated tree
 - suitable for audits after attack detection

Personal trust model (and related: "web-of-trust")

- all entities are end-users (CAs do not exist)
- · keys are essentially self-guaranteed
- some end-users may also be introducers
- · end-user imports public keys of others

CHARACTERISTICS

- · suits individuals, not enterprise/corporations
- user-centric
- · requires security-aware end-users
- poor scalability

51

53

49

PGP/GPG Key Servers

- Centralized support for web of trust: servers that hold huge public key rings
 - update to each other, accept and send updates from/to everyone
 - better than everyone keeping a huge key ring
 - server addresses included with PGP/GPG software
 - concerns: privacy, user registration/verification (are you Bill Gates?) and key revocation
 - Example: PGP Global Directory

Trust models & Revocation

- public-key systems are commonly engineered with long-life certificates
- certificates bind a key-pair to identity (and potentially privilege information)
- circumstances change over certificate life
 - keys may become compromised
 - identifying information may change
 - privilege may be withdrawn
- need ability to terminate the binding expressed in the certificate
- revocation: most difficult issue in practice

Revocation options

mechanisms indicating valid certificates – short-lifetime certificates

mechanisms indicating invalid certificates

- certificate revocation lists CRLs (v1 X.509)
- CRL fragments (v2 X.509), including ...
- segmented CRLs (CRL distribution points)
- delta CRLs
- indirect CRLs

mechanisms providing a proof of status

- status-checking protocols (OCSP, ValiCert)
- iterated hash schemes (Micali)
- certificate revocation trees

54

Revocation summary

- established standards for basic revocation
- ITU-T X.509: 1997, ISO/IEC 9594-8: 1997
 v2 CRLs
- more sophisticated solutions may be needed for specific applications
- revocation of higher level public keys is very hard (if not impossible)
 - e.g. requires browser patch
- even after 20 years of PKI history, revocation is problematic in practice

59

Cł fo

Characterizing questions for trust models

- what are the types/roles of entities involved
- who certifies public keys
- are trust relationships easily created, maintained, updated
- granularity of trust relationships
- ability of particular technology to support existing business models of trust
- how is revocation handled?
 ... of end-users ... of certification authorities

62

Trust model continuums
hierarchical browser enterprise personal
[increasing granularity of trust]
hierarchical browser personal enterprise
[increasing capability to represent B2B trust]
Many other continuums can be formulated
61

Trust model summary

Key idea: manageability of trust relationships Each model has its place --

- personal trust model: okay for security-aware individuals working in small communities
- browser model: simple, large communities, everyone trusts all CAs defined by s/w vendor
- hierarchical model: best given an *obvious* global root and a *grand design* methodology
- enterprise trust model: best between peer organizations, where trust flexibility is required
- global PKI will include variety of trust models

• Public key cryptography and public keys are essential for large scale secure systems

- PKI as we know today is designed for an off-line world in 1978
- · Global PKI is very hard
 - who is authoritative for a given namespace?– liability challenge
- · Revocation is always hard
- Things are much easier if relying party is the same as issuing party: no certificates are needed